### Vibrational Characteristics of the Alkali Metal–Indium Double Molybdates *M*In(MoO<sub>4</sub>)<sub>2</sub> and Tungstates *M*In(WO<sub>4</sub>)<sub>2</sub> (*M*=Li, Na, K, Cs)

### M. Mączka

Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wrocław, Poland

Received April 17, 1996; in revised form November 25, 1996; accepted November 27, 1996

Infrared and Raman spectra of polycrystalline alkali metalindium double molybdates  $MIn(MoO_4)_2$  (where M = Na, K, Cs) and alkali metal-indium double tungstates  $MIn(WO_4)_2$  (where M = Li, Na, K) were measured in the range 40–1000 cm<sup>-1</sup> at room temperature. To determine the symmetries and nature of the observed modes a factor group analysis has been performed. The crystal structure of the compounds studied depends on the type of cation and changes from trigonal (for the caesium–indium molybdate) to monoclinic and triclinic (for the lithium and sodium derivatives). The character of the coordination sphere around the molybdenum and tungsten atoms changes from tetrahedral (for the studied double molybdates and  $KIn(WO_4)_2$ ) to octahedral (for the LiIn( $WO_4$ )<sub>2</sub> and  $NaIn(WO_4)_2$ ). The assignment of the observed bands to the respective internal and external vibrational modes is proposed. © 1997 Academic Press

### 1. INTRODUCTION

Double molybdates and tungstates have been extensively studied for many years since they are suitable as host materials for a variety of inorganic phosphors. The properties of alkali metal-bismuth double molybdates and tungstates have been the subject of our previous studies (1-5). Alkali metal-indium double molybdates and tungstates belong to another group of promising laser materials. These crystals can be easily doped with chromium(III) ions and the coordination of the chromium ions is near octahedral. To understand the electronic properties of indium compounds doped with chromium ions it is important to know the vibrational level distribution of the host materials, their symmetries, and assignment to the respective normal modes. In the present paper the dependence of the vibrational properties on the structural arrangement for three molybdates and three double tungstates are discussed.

The caesium-indium double molybdate was obtained in two structural modifications, trigonal and orthorhombic. Although the phase transition temperature from the trigonal to the orthorhombic structure is 743 K (6), it is possible to obtain the high-temperature modification at room temperature by fast cooling. The dependence of the crystal structure on the cooling rate was observed earlier for  $RbIn(MoO_4)_2$  (7).

### 2. EXPERIMENTAL

The compounds studied have been grown by the thermal method developed by Borisov and Klevtsova (8) and Klevtsov *et al.* (9).  $CsIn(MoO_4)_2$  has been obtained by heating the stoichiometric mixture of  $Cs_2CO_3$ ,  $In_2O_3$ , and  $MoO_3$ , to 650°C and keeping it at this temperature for 48 h. To obtain the trigonal modification the mixture was cooled down to room temperature with the rate 5°C per min. In the case of the orthorhombic structure the cooling rate was 2°C per h.

Powder diffraction spectra were measured by a Stoe powder diffraction system, using CuK $\alpha$  radiation. IR spectra in nujol and KBr suspensions at 300 K were recorded with a Perkin-Elmer 2000 FT-IR spectrophotometer. Raman spectra were measured in back-scattering geometry with a Perkin-Elmer 2000 near-infrared FT-Raman spectrometer. The excitation source was the 1064 nm line of a YAG: Nd<sup>3+</sup> laser. The laser output power was 150 mW. Since the In-GaAs detector was not able to measure Raman spectra below 200 cm<sup>-1</sup>, the spectra in the range 250–50 cm<sup>-1</sup> were recorded with a double-beam DFS 24 monochromator with a photon counting system (cooled GaAs Burle (USA) photomultiplier). The IR spectra in the region  $450-1000 \text{ cm}^{-1}$ and Raman spectra in the region  $200-1000 \text{ cm}^{-1}$  were recorded with 1 cm<sup>-1</sup> spectral resolution. The far-infrared and Raman spectra in the range  $250-40 \text{ cm}^{-1}$  were measured with 2 and  $4 \text{ cm}^{-1}$  resolution, respectively.

### 3. RESULTS AND FACTOR GROUP ANALYSIS (FGA)

### 3.1. Molybdate with Triclinic Structure $(NaIn(MoO_4)_2)$

NaIn(MoO<sub>4</sub>)<sub>2</sub> crystallizes in the triclinic  $P\overline{1} = C_i^1$  structure. The unit cell of this crystal contains four formula units and the lattice parameters are: a = 7.18, b = 7.18, c = 14.90 Å,  $\alpha = 92$ ,  $\beta = 88$ , and  $\gamma = 82^{\circ}$  (10). The MoO<sub>4</sub><sup>2-</sup> tetrahedra in the structure of NaIn(MoO<sub>4</sub>)<sub>2</sub> occupy four and cations two crystallographically nonequivalent sites of

 $C_1$  symmetry. According to the factor group analysis a total of 144 unit-cell modes are distributed among  $3A_u$  acoustic modes,  $24A_g + 21A_u$  translational modes,  $12A_g + 12A_u$  librational modes, and  $36A_g + 36A_u$  internal modes. The vibrational frequencies are listed in Table 1 and the spectra are presented in Fig. 1.

# 3.2. Compounds with the Orthorhombic Structure (KIn(MoO<sub>4</sub>)<sub>2</sub>, CsIn(MoO<sub>4</sub>)<sub>2</sub> and KIn(WO<sub>4</sub>)<sub>2</sub>) and the Trigonal CsIn(MoO<sub>4</sub>)<sub>2</sub> Modification

The potassium–indium double molybdate crystallizes in the orthorhombic structure, space group  $Pnam = D_{2h}^{16}$  and

| NaIn(MoO <sub>4</sub> ) <sub>2</sub> |                   | KIn(MoO <sub>4</sub> ) <sub>2</sub> |                   | KIn            | (WO <sub>4</sub> ) <sub>2</sub> |                                               |
|--------------------------------------|-------------------|-------------------------------------|-------------------|----------------|---------------------------------|-----------------------------------------------|
| IR<br>spectrum                       | Raman<br>spectrum | IR<br>spectrum                      | Raman<br>spectrum | IR<br>spectrum | Raman<br>spectrum               | Assignments                                   |
| 983w                                 | 982s              | 973m                                | 967sh             | 992m           | 988w                            |                                               |
| 975w                                 | 972s              | 958sh                               | 963m              | 980m           | 975vs                           | W(MO)                                         |
| 957m                                 | 947s              | 949sh                               | 956m              |                | (                               | $V_{\rm s}(MO_4)$                             |
| 941m                                 | 938w              | 939sh                               | 941vs             |                | J                               |                                               |
| 931m                                 | 927m              | 931s                                | 935sh             | 960sh          | )                               |                                               |
|                                      | 922sh             |                                     | 915m              | 940s           | 949w                            |                                               |
| 901w                                 | 894w              | 891w                                | 881m              | 908w           | 910s                            |                                               |
|                                      | 882m              |                                     |                   | 890w           | 892w                            |                                               |
| 873sh                                | 874vw             |                                     |                   | 874w           | 885m                            |                                               |
| 859sh                                | 856w              | 860w                                |                   | 859sh          | 850vw                           | $v_{\rm c}(M\Omega_{\rm c})$                  |
| 842sh                                | 831m              | 837sh                               | 838w              |                | ſ                               | (as(1104)                                     |
| 824s                                 | 826sh             | 802s                                | 814w              | 822s           |                                 |                                               |
| 811sh                                |                   |                                     | 798w              | 810s           | 779m                            |                                               |
| 786m                                 | 770w              |                                     | 767m              | 762w           | 764m                            |                                               |
| 758m                                 | 759w              | 740w                                | 748m              |                |                                 |                                               |
|                                      | 738w              |                                     |                   |                | )                               |                                               |
| 462m                                 | 439w              |                                     |                   |                |                                 |                                               |
| 429m                                 | 419w              |                                     |                   |                | Ļ                               |                                               |
| 404m                                 | 398m              | 406m                                | 407w              | 398s           | 405w                            | $\delta_{ m as}(MO_4)$                        |
| 393sh                                |                   | 386m                                | 377m              |                | 373s                            |                                               |
| 381sh                                | 379m              |                                     | 357m              | 355w           | J                               |                                               |
|                                      | 345sh             | 344m                                | 346s              | 344s           | 348s                            |                                               |
|                                      | 339sh             |                                     |                   |                |                                 |                                               |
| 335sh                                | 334s              |                                     |                   | 330sh          | 336w                            |                                               |
| 328w                                 | 325s              | 327w                                | 331s              |                |                                 |                                               |
| 315sh                                | 319sh             | 323sh                               | 321w              |                | }                               | $\delta_{s}(MO_{4})$                          |
| 311w                                 |                   |                                     |                   | 302s           | 316w                            |                                               |
| 297w                                 | 294w              | 302w                                | 298w              |                |                                 |                                               |
| 281w                                 |                   | 278w                                |                   |                |                                 |                                               |
| 276sh                                | 271w              | 244                                 | 2.44              | 275s           | 287w                            |                                               |
| 270sh                                | 267w              | 266m                                | 266w              |                | 261w )                          |                                               |
| 252w                                 | 220               | 220                                 | 222               | 215            | 222                             |                                               |
| 224W                                 | 228W              | 220m                                | 223W              | 215W           | 222W                            |                                               |
| 201W                                 | 217VW             | 206sh                               | 102               | 202            | 214W                            | $T'(\ln^{3+}),$                               |
| 19/sn<br>178                         |                   | 1/3W                                | 183W              | 202VW          | 204w                            | $T'(Na^+)$ and                                |
| 1/8W                                 | 165               | 1008                                | 108W              | 181Sn<br>164a  | 1/2m<br>159                     | $T'(\mathbf{K}^+)$                            |
| 160w                                 | 103W              |                                     |                   | 1048           | 138W                            |                                               |
| 146                                  | 133W              |                                     |                   |                | J                               |                                               |
| 140m<br>140sh                        | 1488n<br>140m     | 144a                                | 147               | 142m           | 144m )                          |                                               |
| 140811                               | 140111            | 1448<br>120sh                       | 147w              | 143III<br>128m | 144III (<br>127m                | $L(MoO_4^{2-})$ and $L(WO_4^{2-})$            |
|                                      | 127               | 13981                               | 115ah             | 136111         | 12/W J                          |                                               |
|                                      | 1∠/W              | 110W                                | 11,5811           | 111W<br>101w   |                                 |                                               |
| 107m                                 | 102m              | 100m                                | 108m              | 101W<br>00w    | 91m                             | $T'(M_0 \Omega^{2-})$ and $T'(W \Omega^{2-})$ |
| 10/111                               | 9211              | 87m                                 | 845               | 20W            | 87m                             | $I (WOO_4) and I (WO_4)$                      |
|                                      | 82m               | 49m                                 | 71w               | 71w            | 84m                             |                                               |

 TABLE 1

 Vibrational Wavenumbers for Polycrystalline NaIn(MoO<sub>4</sub>)<sub>2</sub>, KIn(MoO<sub>4</sub>)<sub>2</sub>, and KIn(WO<sub>4</sub>)<sub>2</sub>



**FIG. 1.** IR (a) and Raman (b) spectra of  $NaIn(MoO_4)_2$ .



FIG. 2. IR (a) and Raman (b) spectra of  $KIn(MoO_4)_2$ .

lattice parameters a = 14.79, b = 8.729, c = 5.879 and Z = 4 (11). In this structure all the cations are crystallographically equivalent and occupy sites of  $C_s$  symmetry. The molybdate ions form two sets of crystallographically nonequivalent sites of  $C_s$  symmetry. According to Klevtsov et al. (11), the  $KIn(MoO_4)_2$  crystal exhibits no phase transition between the room- and the melting-point temperature  $(840^{\circ}C)$ . There are 144 zone-center modes, 3 of which are acoustic  $(B_{1u} + B_{2u} + B_{3u})$ , 45 translational  $(8A_g + 4B_{1g} + 8B_{2g} + 4B_{3g} + 4A_u + 7B_{1u} + 3B_{2u} + 7B_{3u}),$ 24 librational  $(2A_g + 4B_{1g} + 2B_{2g} + 4B_{3g} + 4A_u + 2B_{1u} +$  $4B_{2u} + 2B_{3u}$ , and 72 internal modes  $(12A_q + 6B_{1q} +$  $12B_{2g} + 6B_{3g} + 6A_u + 12B_{1u} + 6B_{2u} + 12B_{3u}$ ). The wavenumbers of the observed vibrational modes and their assignments are presented in Table 1. The recorded spectra are shown in Fig. 2.

According to the literature data the KIn(WO<sub>4</sub>)<sub>2</sub> crystal may be obtained in a few different structural modifications. The trigonal,  $P\overline{3}m1$  structure (with a = 5.80, c = 7.25 Å, and Z = 1) exists in the 850–930°C temperature range (7, 12, 13). It was possible to freeze this high-temperature phase down to room temperature by putting hot sample into the water (13). Later, a new phase transition was discovered in the trigonal phase at the temperature 181°C (14, 15). This ferroelastic phase transition has been a subject of many EPR and crystallographic studies (16-19). It was shown that the structure below  $181^{\circ}C$  is monoclinic  $(C2/c = C_{2h}^6, a = 10.11, c_{2h}^6)$ b = 5.78, c = 14.49,  $\beta = 90.33^{\circ}$  (15)). When the trigonal  $KIn(WO_4)_2$  crystal is slowly cooled (i.e., a few degree per hour) it exhibits a phase transition at 850°C to the ortho- $KIn(MoO_4)_2$ -type structure (*Pnam* =  $D_{2h}^{16}$ ) rhombic, a = 14.75, b = 8.74, c = 5.90 Å, Z = 4) (7). Kharchenko et al. (12) concluded that this orthorhombic structure is stable in the 730-860°C temperature range and below 730°C the structure is monoclinic,  $\alpha$ -KY(WO<sub>4</sub>)<sub>2</sub>-type (C2/c,  $a = 8.14, b = 10.08, c = 7.38 \text{ Å}, \beta = 94^{\circ}, \text{ and } Z = 4$ ). This low-temperature structure was, however, obtained only with the hydrothermal method, where the reaction temperature (550-500°C) was below that of the orthorhombic-monoclinic phase transition (12).

In the present studies the crystals were obtained by the thermal method with the cooling rate of  $2^{\circ}C$  per hour. The recorded powder diffraction and vibrational spectra (Fig. 3, Table 2) indicate that the obtained crystals are



**FIG. 3.** IR (a) and Raman (b) spectra of  $KIn(WO_4)_2$ .

| orthorhon | ibic and  | l isostructu | ral to | those   | of  | $KIn(MoO_4)_2$ . |
|-----------|-----------|--------------|--------|---------|-----|------------------|
| No α-KY(  | $WO_4)_2$ | type crystal | s were | e obtai | ned | l.               |

Caesium-indium double molybdate crystallizes also in the orthorhombic structure, for which the lattice parameters are a = 14.79, b = 8.729, and c = 5.879 Å (6). This compound can be, however, easily obtained also in the trigonal structure (space group  $P\overline{3}m1 = D_{3d}^3$ , a = 5.839, c = 8.103 Å, Z = 1 (6)). In the trigonal structure the MoO<sub>4</sub><sup>2-</sup> tetrahedra occupy the specific position  $2d_1$  with symmetry  $C_{3v}$ . The  $In^{3+}$  and  $Cs^+$  cations occupy the positions 1a and 1b with symmetry  $D_{3d}$ . The one molecule in the trigonal unit cell gives rise to 36 vibrational modes:  $A_{2u} + E_u$  acoustic,  $A_{1g} + E_g + 2A_{2u} + 2E_u$  translational,  $A_{2g} + E_g + A_{1u} + E_u$ librational, and  $3A_{1g} + 3E_g + 3A_{2u} + 3E_u$  internal modes. The diagram which correlates the internal and librational modes of the molybdate ion with the respective modes of the trigonal and orthorhombic crystals is presented in Table 3. The IR and Raman spectra measured for both modifications (Figs. 4 and 5, Table 4) show that the symmetry lowering during phase transition (from the trigonal

 TABLE 2

 X-Ray Powder Diffraction Data for the Trigonal and

 Orthorhombic CsIn(MoO<sub>4</sub>)<sub>2</sub> and Orthorhombic KIn(WO<sub>4</sub>)<sub>2</sub>

|          | CsIn(!    | KIr             | $(WO_4)_2$   |       |           |
|----------|-----------|-----------------|--------------|-------|-----------|
| trigonal |           | ortho           | orthorhombic |       |           |
| d (Å)    | intensity | d (Å) intensity |              | d (Å) | intensity |
| 5.026    | 47.0      | 4.735           | 11.4         | 4.625 | 48.9      |
| 4.271    | 68.9      | 4.037           | 9.7          | 4.071 | 34.9      |
| 3.152    | 100.0     | 3.667           | 47.7         | 3.749 | 100.0     |
| 2.893    | 88.1      | 3.502           | 16.5         | 3.469 | 29.9      |
| 2.392    | 10.1      | 3.424           | 15.7         | 3.410 | 13.3      |
| 2.131    | 34.9      | 3.322           | 18.4         |       |           |
| 1.843    | 15.5      | 3.236           | 44.1         | 3.169 | 36.7      |
| 1.719    | 29.6      | 3.045           | 9.9          | 3.125 | 29.8      |
| 1.673    | 15.5      | 2.935           | 100.0        | 2.943 | 69.2      |
| 1.662    | 17.4      | 2.782           | 8.1          | 2.799 | 9.6       |
| 1.578    | 6.8       | 2.744           | 10.3         | 2.741 | 14.1      |
| 1.553    | 6.5       | 2.682           | 7.7          |       |           |
| 1.449    | 14.6      | 2.556           | 15.6         | 2.577 | 21.7      |
|          |           | 2.470           | 21.4         |       |           |
|          |           | 2.357           | 18.7         |       |           |
|          |           | 2.288           | 10.3         |       |           |
|          |           | 2.234           | 9.4          |       |           |
|          |           | 2.174           | 10.7         | 2.034 | 20.6      |
|          |           | 2.007           | 9.8          |       |           |
|          |           | 1.975           | 6.9          |       |           |
|          |           | 1.902           | 9.7          | 1.888 | 16.0      |
|          |           | 1.809           | 13.0         | 1.843 | 12.4      |
|          |           | 1.792           | 11.3         | 1.786 | 17.4      |
|          |           | 1.764           | 21.3         | 1.755 | 10.1      |
|          |           |                 |              | 1.734 | 13.8      |
|          |           | 1.628           | 11.5         | 1.681 | 9.0       |
|          |           | 1.581           | 10.0         | 1.583 | 9.6       |

to the orthorhombic structure) results in the splitting of the observed bands into a few components. Moreover, some of the IR and Raman inactive modes, for the trigonal crystal, become active for the low-temperature modification.

## 3.3. Monoclinic Tungstate of the $C2/c = C_{2h}^6$ Structure $(LiIn(WO_4)_2)$

The LiIn(WO<sub>4</sub>)<sub>2</sub> crystallizes in the monoclinic structure  $C2/c = C_{2h}^6(20, 21)$ . The unit-cell dimensions are as follows: a = 9.57, b = 11.59, c = 4.95 Å,  $\beta = 91.1^\circ$ , and Z = 4 (20). The crystal is built up of WO<sub>4</sub><sup>2-</sup> ions connected to each other by means of intermolecular interactions of



|                       | Trigonal structur      | re                       | Orthorhombic structure |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------|------------------------|--------------------------|------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Molecular symmetry    | Site group<br>symmetry | Factor group<br>symmetry | Molecular<br>symmetry  | Site group<br>symmetry | Factor group<br>symmetry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $T_{d}$               | $C_{3v}$               | $D_{3d}$                 | $T_{d}$                | $C_s$                  | $D_{2h}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                       |                        |                          |                        |                        | $A_g = B_{2g}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| A <sub>1</sub>        | A <sub>1</sub>         |                          | $A_1$                  | A''                    | $B_{1u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                       |                        | $A_{2u}$                 |                        | `-                     | $B_{3u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                       |                        | 1.57                     |                        |                        | $B_{2g}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                       |                        |                          |                        | A' —                   | $B_{1u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| /                     |                        | $A_{2u}$                 |                        | `-                     | $ B_{3u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <i>F</i> <sub>2</sub> |                        |                          |                        | /-                     | $A_g = B_{2a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                       | \ /                    | E <sub>g</sub>           | <i>F</i> <sub>2</sub>  | A'                     | B <sub>11</sub> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                       |                        |                          |                        | <u> </u>               | $B_{3u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                       | $\backslash$           |                          |                        | /-                     | $ B_{1g} \\ B_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                       |                        | -                        |                        | A'' —                  | - <sub>3g</sub><br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                       |                        |                          |                        | \                      | $ B_{2u}^{u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                       |                        |                          |                        |                        | $A_g = B_{2a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                       | /                      | $ E_g$                   |                        | A''                    | $B_{1u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| E                     | E                      |                          | Ε                      | `_                     | $ B_{3u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                       |                        | _                        |                        |                        | $\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$ |
|                       | Ň                      | $ E_u$                   | `_                     | A''                    | $A_{\mu}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                       |                        |                          |                        | `_                     | $B_{2u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                       | /                      | $A_{2g}$                 |                        |                        | $B_{3g}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                       |                        |                          |                        | A''-'                  | $A_u$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| /                     | /                      | A <sub>1u</sub>          |                        | `-                     | $B_{2u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $F_1$ –               |                        |                          |                        |                        | $A_g = B_{2g}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                       |                        | E <sub>g</sub>           | $F_1$                  | — A'                   | $B_{1u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ·                     | $\setminus$ /          |                          |                        | <u>\_</u>              | <i>B</i> <sub>3<i>u</i></sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                       | ` E —                  |                          |                        | /-                     | $ B_{1g} \\ B_{3g}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                       |                        | $ E_u$                   |                        | A''-                   | $A_{u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       |                        |                          |                        | <u> </u>               | $B_{2u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

 TABLE 3

 Correlation Diagram for the Trigonal and Orthorhombic CsIn(MoO<sub>4</sub>)<sub>2</sub> Crystals



**FIG. 4.** IR (a) and Raman (b) spectra of the orthorhombic  $CsIn(MoO_4)_2$ .

forming chains along the *c* direction. The two different W···O distances are 2.36 and 2.07 Å. The



are related to each other by a *c* glide plane and the double oxygen bridge symmetry is  $C_1$ . All oxygen bridges in the crystal are crystallographically equivalent and the resulting coordination of the tungstate atoms is octahedral. According to the FGA the three acoustic modes are distributed among  $A_u + 2B_u$ , translational among  $4A_g + 5B_g + 2A_u +$  $4B_u$ , librational among  $A_g + 2B_g + 2A_u + B_u$ , and internal among  $12A_g + 12B_g + 12A_u + 12B_u$  irreducible representations. The recorded spectra (Fig. 6, Table 5) differ significantly from those of the above-described molybdates.



**FIG. 5.** IR (a) and Raman (b) spectra of the trigonal  $CsIn(MoO_4)_2$ .

The new bands are observed in the region  $450-700 \text{ cm}^{-1}$  due to the

vibrations.

### 3.4. Monoclinic Tungstate of P2<sub>1</sub>/c Structure (NaIn(WO<sub>4</sub>)<sub>2</sub>)

NaIn(WO<sub>4</sub>)<sub>2</sub> crystallizes in the P2/c structure with a = 10.077, b = 5.808, c = 5.027 Å, and  $\beta = 91.10^{\circ}$  (21–25). This structure is very similar to that of the LiIn(WO<sub>4</sub>)<sub>2</sub>. Also in this case the crystal is built up of tungstate chains. Since the unit cell contains only two formula units the results of the FGA are the same as for the LiIn(WO<sub>4</sub>)<sub>2</sub>. The NaIn(WO<sub>4</sub>)<sub>2</sub> structure differs significantly, however, from that of lithium–indium double tungstate: there exist in the NaIn(WO<sub>4</sub>)<sub>2</sub> crystal two different kinds of oxygen bridges.

| IR spectra   |                   | Raman spectra |                   |                               |
|--------------|-------------------|---------------|-------------------|-------------------------------|
| Pnam         | $P\overline{3}m1$ | Pnam          | $P\overline{3}m1$ | Assignments                   |
|              |                   | 966w          | )                 |                               |
| 958sh        | 956sh             | 956s          | 974m }            | $v_{s}(MoO_{4})$              |
| 951m         |                   | 947vw         |                   | 3( +/                         |
|              |                   | 941s          | J                 |                               |
| 936m         | 914sh             | 920m          | 935s ]            |                               |
| 885w         |                   | 883w          |                   |                               |
| 855m         | 846s              | 869m          |                   |                               |
| 802s         |                   | 827w          | }                 | $v_{as}(MoO_4)$               |
| 781s         |                   | 798w          | 789m              |                               |
| 739m         |                   | 743m          |                   |                               |
|              |                   | 741sh         | J                 |                               |
| 440s         |                   | 423sh         | J                 |                               |
| 427s         |                   | 416w          |                   |                               |
|              |                   | 377m          |                   |                               |
|              |                   | 366m          | }                 | $\delta_{\rm as}({ m MoO_4})$ |
| 358m         |                   | 352w          |                   |                               |
| 344m         | 344s              | 343m          | <sub>343m</sub> J |                               |
|              |                   | 334w          | 2                 |                               |
|              |                   | 322m          | 321m              |                               |
| 306s         | 2938              | 310w          | {                 | $\delta_{a}(M_{0}O_{4})$      |
| 284s         |                   | 297vw         |                   | s(                            |
| 269w         |                   |               | J                 |                               |
| 253w         |                   |               | )                 |                               |
| 230m         |                   | 243m          |                   |                               |
| 226m         | 206s              | 222w          | }                 | $T'(\ln^{3+})$                |
| 203m         | 1968              | 193w          |                   |                               |
| 167s         | 1900              | 175w          | ر ر<br>ر          |                               |
| 1075         |                   | 154w          | 173m              |                               |
|              |                   | 150w          | 148m              |                               |
| 145m         | 1238              | 140w          | i iom             | $L(MoO_4)$ and $T'(MoO_4)$    |
| 1 10111      | 1200              | 136w          |                   |                               |
|              |                   | 125w          |                   |                               |
| 111w         |                   | 119w          | J                 |                               |
| 111 W        |                   | 109w          | J                 |                               |
|              |                   | 94m           | ł                 | $T'(Cs^+)$                    |
| 92w          | 88w               | 90m           | J                 | 1 (03)                        |
| 92.w<br>81.w | 00W               | 77m           | )                 |                               |
| 01W          |                   | 73m           | 8811              |                               |
| 6611         |                   | 6211          | 00w }             | $T'(M_{2}\Omega_{1})$         |
| 51m          | 57m               | 57m           |                   | 1 (1004)                      |
| 31W          | 37111             | JIW           | J                 |                               |
| 44W          |                   |               |                   |                               |

| TABLE 4                                                 |  |  |  |  |  |
|---------------------------------------------------------|--|--|--|--|--|
| Vibrational Wavenumbers for Orthorhombic (Pnam) and     |  |  |  |  |  |
| Trigonal ( $P\overline{3}m1$ ) CsIn(MoO <sub>4</sub> ), |  |  |  |  |  |

In one type of the bridge the two  $W \cdots O$  distances are 2.09 Å and for the other they are 2.24 Å. These differences in the crystal structures of the both compounds are clearly visible in the vibrational spectra (Fig. 7, Table 5).

### 4. DISCUSSION

### 4.1. X-Ray Analysis

The purity and structure of all compounds studied were checked by X-ray powder diffraction. The recorded X-ray



FIG. 6. IR (a) and Raman (b) spectra of  $LiIn(WO_4)_2$ .

patterns for the NaIn(MoO<sub>4</sub>)<sub>2</sub>, KIn(MoO<sub>4</sub>)<sub>2</sub>, LiIn(WO<sub>4</sub>)<sub>2</sub>, NaIn(WO<sub>4</sub>)<sub>2</sub>, and KIn(WO<sub>4</sub>)<sub>2</sub> compounds agree very well with those published earlier (10, 11, 22, 26). No literature data concerning powder diffraction spectra are available for the orthorhombic and the trigonal modifications of CsIn(MoO<sub>4</sub>)<sub>2</sub>. The number of the observed diffraction lines (Table 4) and the *hkl* distances for the orthorhombic sample are very similar to those of the isomorphic KIn(MoO<sub>4</sub>)<sub>2</sub> crystal. The powder diffraction pattern of the trigonal caesium–indium double molybdate is similar to those of other trigonal molybdates (KSc(MoO<sub>4</sub>)<sub>2</sub> (27) and CsSc(MoO<sub>4</sub>)<sub>2</sub> (28)).

### 4.2. Internal Vibrations

Studies of the  $MoO_4^{2-}$  anion in aqueous solutions have located its fundamental frequencies at 894  $(v_1(A_1))$ , 318  $(v_2(E))$ , 833  $(v_3(F_2))$ , and 407 cm<sup>-1</sup>  $(v_4(F_2))$  (29). The respective vibrational modes of the  $WO_4^{2-}$  tetrahedra have been observed at 928, 320, 833, and 405 cm<sup>-1</sup> (30). Studies of the solid compounds (31–45) have shown that the stretching

| $\operatorname{Nall}(WO_4)_2$       |       |                |                   |                                 |  |  |
|-------------------------------------|-------|----------------|-------------------|---------------------------------|--|--|
| NaIn(WO <sub>4</sub> ) <sub>2</sub> |       | LiIn(          | $WO_4)_2$         |                                 |  |  |
| IR Raman<br>spectrum spectrum       |       | IR<br>spectrum | Raman<br>spectrum | Assignments                     |  |  |
| 963s                                | 974vs | 940w           | }                 | » (W, O)                        |  |  |
| 940s                                | 936m  | 908m           | 916s J            | $V_{\rm s}(W=0)$                |  |  |
|                                     | 834m  | 825s           | 793m              | v (W-O)                         |  |  |
| 791s                                | 797w  |                | 775 ∫             | $V_{as}(\mathbf{W},\mathbf{O})$ |  |  |
|                                     |       | 738sh          | J                 |                                 |  |  |
| 712m                                | 716m  | 716s           | 716m              | _O_                             |  |  |
|                                     | 698w  | 648sh          | 675w              | / ·.                            |  |  |
| 605s                                | 621m  | 621s           | 626m 🕻            | $v(\mathbf{w} \mathbf{w})$      |  |  |
| 522m                                | 541m  | 528s           | 541m              | ·/                              |  |  |
| 507w                                |       |                | 528sh J           | 0                               |  |  |
| 477w                                | 498w  | 491vw          | 2                 |                                 |  |  |
| 453m                                | 458w  | 460m           | 457w              |                                 |  |  |
| 404m                                | 402m  | 430w           |                   |                                 |  |  |
| 371w                                | 366sh | 412m           | 396m >            | $\delta(W-O)$ and $T'(Li^+)$    |  |  |
|                                     | 353m  | 364w           | 368m              |                                 |  |  |
| 332s                                | 323vw |                | 340m              |                                 |  |  |
|                                     | 304m  | 327w           | 315m J            |                                 |  |  |
| 293s                                | 288w  | 301s           | 295vw)            |                                 |  |  |
|                                     | 270w  | 269w           | 268vw             | 0                               |  |  |
|                                     | 265sh | 254vw          | 248m              | / <sup>0</sup>                  |  |  |
|                                     |       |                | }                 | $\delta$ (W W) and $T'(Na^+)$   |  |  |
| 247s                                | 239w  | 241m           |                   | ·. /                            |  |  |
| 217w                                | 213m  | 231m           |                   | O                               |  |  |
|                                     |       | 226sh          | 213m J            |                                 |  |  |
| 185m                                | 193sh | 198m           | ן 178w            |                                 |  |  |
| 167m                                | 166m  | 167m           | 166vw             |                                 |  |  |
| 150w                                |       | 150m           | }                 | $T'(\ln^{3+})$                  |  |  |
| 146w                                |       |                | J                 |                                 |  |  |
| 136w                                | 138sh |                | )                 |                                 |  |  |
| 129m                                | 120m  | 140m           | 135m              |                                 |  |  |
| 100vw                               |       |                |                   |                                 |  |  |
| 92m                                 | 87m   | 100w           | 89m }             | $T'(WO_{c})$ and $L(WO_{c})$    |  |  |
| 80w                                 |       |                |                   | - (                             |  |  |
| 71m                                 |       | 71w            | 68m               |                                 |  |  |
| 57w                                 |       |                | J                 |                                 |  |  |
|                                     |       |                |                   |                                 |  |  |

 TABLE 5

 Vibrational Wavenumbers for Polycrystalline LiIn(WO<sub>4</sub>)<sub>2</sub> and

 NaIn(WO<sub>4</sub>)

multiplets ( $v_1$  and  $v_3$ ) occur in the 750–1000 cm<sup>-1</sup> range and the bending modes in the 250–430 cm<sup>-1</sup> range for molybdates and tungstates where anions form isolated tetrahedra. The situation is complicated when the coordination of Mo (or W) atoms is octahedral. The characteristic feature of the hexa-coordinated compounds is appearance of new bands in the region 500–750 cm<sup>-1</sup>, due to the oxygen bridge bond vibrations (35, 46–48).

In the present studies all double molybdates and the potassium-indium double tungstate are composed of isolated tetrahedra ( $MoO_4^{2^-}$  or  $WO_4^{2^-}$ ). Only one symmetric ( $A_{1g} + A_{2u}$ ) and two asymmetric stretching modes ( $A_{1g} + E_g + A_{2u} + E_u$ ) should be observed both in IR and Raman spectrum of the trigonal CsIn( $MoO_4$ )<sub>2</sub>. The re-



FIG. 7. IR(a) and Raman (b) spectra of  $NaIn(WO_4)_2$ .

corded spectra are in agreement with these predictions (Fig. 5). Of the three observed bands the medium intensity Raman band at 789 cm<sup>-1</sup> and strong IR band at 846 cm<sup>-1</sup> originate from asymmetric vibration of  $MoO_4^{2-}$  tetrahedra since according to intensity considerations (Müller et al. (49)) the  $v_3$  has higher intensity than  $v_1$  in IR spectra and the reverse holds in Raman measurements. The second asymmetric stretching mode is more difficult to locate since both IR bands at 956 and 914 cm<sup>-1</sup> are weak. In the Raman spectrum the strongest and narrow band is observed at  $935 \text{ cm}^{-1}$  and the second, much weaker and broader, at  $974 \text{ cm}^{-1}$ . The former band could be assigned to the symmetric stretching vibration and the second to the asymmetric stretching vibration. However, in my former study of trigonal  $KSc(WO_4)_2$  and  $CsSc(WO_4)_2$  (50) the bands around 930 cm<sup>-1</sup> are much weaker and broader and the strongest Raman bands are those around  $1000 \text{ cm}^{-1}$ . Therefore, I assigned the 974 cm<sup>-1</sup> band to  $v_1$  and the  $935 \text{ cm}^{-1}$  band to the  $v_3$  mode. The vibrational spectra of the orthorhombic  $CsIn(MoO_4)_2$  support this assignment. For this crystal the  $v_1$  mode is expected to split into eight

components  $(2A_g + 2B_g + 2B_{1u} + 2B_{3u})$ . The  $A_g$  and  $B_g$ modes are Raman and  $B_{1u}$  and  $B_{3u}$  are IR active. The Raman bands at 956 and 941 cm<sup>-1</sup> are very intense and therefore they can be assigned to totally symmetric stretching modes  $(A_a)$ . The IR spectrum consists in this region of one band at  $951 \text{ cm}^{-1}$  with a shoulder at  $958 \text{ cm}^{-1}$ . The observation of only two IR modes indicates on a very small Davydov splitting in this compound and therefore for the polycrystalline sample each  $B_{1u} + B_{3u}$  pair is observed as one band. The asymmetric stretching modes are observed as weak and medium intensity Raman bands and medium to strong intensity IR bands, in agreement with the intensity rule. Of 12 predicted Raman and 10 IR active modes only 7 are recorded in Raman and 6 in the IR spectrum since for the majority of modes no factor group splitting is observed. The number of observed vibrational modes is smaller than predicted also for the other orthorhombic crystals, KIn(MoO<sub>2</sub>)<sub>4</sub> and KIn(WO<sub>4</sub>)<sub>2</sub>. Four symmetric modes are observed both in Raman and IR spectra of the KIn(MoO<sub>4</sub>)<sub>2</sub> and only two for the double tungstate. The respective asymmetric modes, observed in the range 740–940 cm<sup>-1</sup>, give rise to strong IR and weak Raman bands. In the case of the NaIn(MoO<sub>4</sub>)<sub>2</sub>, crystallizing in triclinic structure, 4 symmetric and 12 asymmetric vibrational modes should be observed in both Raman and IR spectrua. The four components of the  $v_1$  vibration are easily located in the range 938–983 cm<sup>-1</sup> since the recorded Raman bands are strong. Of the 12 asymmetric modes, only 1 is missing in Raman and 3 in the IR spectrum. This is probably due to either accidental degeneracy or to overlapping of some bands by much stronger ones. The vibrational characteristics of the compounds studied depends strongly on the nature of the anion and the crystalline structure. Both  $v_1$  and  $v_3$  modes are observed at higher wavenumbers (992-975 and 960–762 cm<sup>-1</sup>, respectively) for the double tungstate in comparison with the double molybdates (983-938 and  $936 - 738 \text{ cm}^{-1}$ ). The lowering of crystal symmetry from trigonal to triclinic results in splitting of the 1  $v_1$  vibrational level into 4 and the 2  $v_3$  levels into 11 components.

The bending vibrations are observed in the  $253-462 \text{ cm}^{-1}$  wavenumber region. The statement that  $v_4 > v_2$  (49) is not completely fulfilled. In some cases the  $v_4$  and  $v_2$  vibrations are well separated and observed as two groups of bands. For NaIn(MoO<sub>4</sub>)<sub>2</sub>, v<sub>4</sub> bands are observed at 379-462 and  $v_2$  at 267–345 cm<sup>-1</sup>. For the orthorhombic compounds, however, Raman spectra consist of many sharp bands and no clear separation between  $v_2$  and  $v_4$  modes can be observed. For these crystals some of the lowest  $v_4$  components may fall below the highest  $v_2$  ones. The situation is also not clear in the case of the trigonal  $CsIn(MoO_4)_2$ . As a result of symmetry lowering from  $T_d$  for a regular, isolated tetrahedra to  $C_{3v}$  in the trigonal crystal, the  $v_4(F_2)$  vibration should be split into two components ( $E_q$  and  $A_{1q}$  in Raman and  $A_{2u}$  and  $E_u$  in IR). Therefore, together with the  $v_2$  mode, three bands are expected to be observed in the bending mode region. However, both the IR and Raman spectra consist in this region of two bands only. A similar spectroscopic feature was observed also for the  $KSc(MoO_4)_2$ crystal (51) where the 351 cm<sup>-1</sup> Raman active band was assigned to  $v_2(E_a)$  mode and the 328 cm<sup>-1</sup> one to  $v_4(E_q + A_{1q})$ ). The respective IR active modes were located at  $363 \text{ cm}^{-1}$  ( $v_2(E_u)$  and  $292 \text{ cm}^{-1}$  ( $v_4$  ( $E_u + A_{2u}$ )). This assignment seems, however, to be incorrect. All studies concerning simple and double molybdates indicate that the strongest Raman lines are observed about 320 cm<sup>-1</sup> and are due to symmetric bending vibrations  $(v_2)$ . Therefore, it is most likely that the 321 cm<sup>-1</sup> Raman line originate from  $v_2$  and that at 343 cm<sup>-1</sup> from  $v_4$  bending vibrations. For all orthorthombic compounds and the triclinic molybdate fewer bands are observed than expected. Of 20 Raman active modes for the orthorhombic crystals and the triclinic  $NaIn(MoO_4)_2$  only 7 are observed for  $KIn(WO_4)_2$ , 8 for the  $KIn(MoO_4)_2$ , 10 for the  $CsIn(MoO_4)_2$ , and 12 for the NaIn(MoO<sub>4</sub>)<sub>2</sub>. The number of recorded IR bands is even smaller than those Raman active. Similar to the case of stretching vibrations, fewer modes are observed because of very small Davydov splitting and the overlapping of weaker oscilators by stronger ones.

The IR and Raman spectra for  $\text{LiIn}(WO_4)_2$  and  $\text{NaIn}(WO_4)_2$  differ significantly from the above-described molybdates and tungstate due to the existence of the double oxygen

bridge 
$$\overset{\bigcirc}{W} \overset{\bigcirc}{W}$$
 bonds  $\overset{\bigcirc}{\cdot} \overset{\bigcirc}{O}$ 

in these crystals. There are  $4 \times 3 - 6 = 6$  vibrational modes for a

double bridge 
$$\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

consisting of four atoms. Four of these modes describe stretching and two describe bending vibrations. The remaining 12 - 6 = 6 modes for each polarization originate from the symmetric stretching (1 mode), asymmetric stretching (1 mode), and bending (4 modes) vibrations of the terminal W–O bonds. The recorded spectra are consistent with the FGA performed for these crystals. Only one very strong Raman band observed at 916 cm<sup>-1</sup> for LiIn(WO<sub>4</sub>)<sub>2</sub> originate from the symmetric terminal W–O vibrations and the medium intensity 793 cm<sup>-1</sup> band with a shoulder at 775 cm<sup>-1</sup> from the asymmetric W–O vibrations. The four double bridge stretching vibrations are observed in the

528–738 cm<sup>-1</sup> region. The shoulders at 738 (IR spectrum) and 528 cm<sup>-1</sup> (Raman spectrum) originate probably from combination modes. The respective spectra of the NaIn(WO<sub>4</sub>)<sub>2</sub> show the splitting of the  $v_s(W-O)$  and  $v_{as}(W-O)$  bands into the two components due to the existence of two different, crystallographically nonequivalent types of oxygen bridges in the crystal structure. The six bending modes are observed in the range 220–500 cm<sup>-1</sup>.

### 4.3. External Modes

Translational modes of MoO<sub>4</sub><sup>2-</sup>, WO<sub>4</sub><sup>2-</sup>, In<sup>3+</sup>, and alkali-metal ions as well as librational modes are expected to be observed in the region below  $300 \text{ cm}^{-1}$ . Former studies of simple tungstates MWO<sub>4</sub>, where  $M = Ca^{2+}$ ,  $Sr^{2+}$ ,  $Ba^{2+}$ , and  $Pb^{2+}$ , showed that the replacement of a lighter cation by a heavier one results in frequency lowering of the translational modes. The respective modes were observed at 207–210, 162–163, 141–142 and 126 cm<sup>-1</sup> (33, 36, 39, 52). In the present studies of the trigonal CsIn(MoO<sub>4</sub>)<sub>2</sub> the broad IR band at 201 cm<sup>-1</sup> (absent in Raman spectrum) originates from the translations of the  $In^{3+}$  ions. The  $T'(In^{3+})$  modes for the remaining double molybdates and tungstates are observed in the range 150-243 cm<sup>-1</sup>, depending on the crystal structure. The translations of caesium ions (atomic mass 133) should be observed at slightly smaller wavenumber that those of In<sup>3+</sup> ions (atomic mass 115). However, in the crystal lattice of the trigonal and orthorhombic compound the Cs-O bonds are much longer (2.7-3 Å) than those of In–O (2–2.2 Å). Therefore, the  $T'(Cs^+)$  translations are observed at much smaller wavenumbers than  $T'(In^{3+})$ and were located in the range  $80-105 \text{ cm}^{-1}$ . For the orthorhombic and monoclinic compounds the frequency of the pure translational vibration is approximately proportional to the square root of the appropriate reciprocal reduced mass. The  $T'(K^+)$  modes are observed in the range 143–164 cm<sup>-1</sup>,  $T'(Na^+)$  in the range 197–252 cm<sup>-1</sup>, and  $T'(\text{Li}^+)$  at 430 cm<sup>-1</sup>. Tarte and Liegeois–Duyckaerts (33) observed the translational modes of the  $MoO_4^{2-}$  ion in the region 90-140 cm<sup>-1</sup> and librational modes in the region  $180-260 \text{ cm}^{-1}$ . The later studies of trigonal molybdates (51, 52) located the translational modes of the  $MoO_4^{2-}$  ions in the regions 50–100 and 130–210  $\text{cm}^{-1}$ . The librations were located in the 120-170 cm<sup>-1</sup> range. In the present work for the compounds built up of isolated tetrahedra the librations are observed in the region  $140-190 \text{ cm}^{-1}$  as medium intensity bands in the Raman spectra and weak bands in IR spectra because the librational vibrations lead to a large change in polarizability. In the case of polymeric NaIn(WO<sub>4</sub>)<sub>2</sub> and LiIn(WO<sub>4</sub>)<sub>2</sub> crystals the librational bands are situated below  $145 \text{ cm}^{-1}$  and should be rather regarded as some kind of torsional movements of chain fragments. The bands originating from translational movements of the  $MoO_4^{2-}$  ions are observed for the compounds studied in the 44–148 cm<sup>-1</sup> wavenumber range and those originating from translational movements of tungstate ions in the range 111–71 cm<sup>-1</sup>.

This assignment of the vibrational bands to "localized" motions is only an oversimplified scheme. Former results (53, 54) suggest that the translation of the  $M^+$ ,  $M^{3+}$ , and  $M^{6+}$  ions are strongly coupled and should be described as mixed  $T'(M^+, M^{6+})$  and  $T'(M^{3+}, M^{6+})$  translatory lattice modes. In summary, the vibrational properties of the  $MIn(MoO_4)_2$  and  $MIn(WO_4)_2$  compounds for M = Li, Na, K, Cs have been studied. It was stated that the energy range of stretching vibrations extends from 738 to  $992 \text{ cm}^{-1}$  and bending from 266 to  $462 \text{ cm}^{-1}$  for the compounds with tetrahedral coordination of Mo(W) atoms. The respective regions for the polymeric  $LiIn(WO_4)_2$  and  $NaIn(WO_4)_2$ crystals are larger (498-974 cm<sup>-1</sup> for the stretching and  $213-491 \text{ cm}^{-1}$  for the bending modes). The translational and librational modes of the  $M^+$ ,  $In^{3+}$ ,  $WO_4^{2-}$  and  $MoO_4^{2-}$ ions have been observed in the region below  $260 \text{ cm}^{-1}$ , except for the very light Li<sup>+</sup> ions, for which translational modes were located around  $430 \text{ cm}^{-1}$ .

### REFERENCES

- 1. J. Hanuza and M. Mączka, Vibrational Spectrosc. 7, 85 (1994).
- J. Hanuza, M. Mączka, L. Macalik, and J. H. van der Maas, J. Mol. Struct. 325, 119 (1994).
- J. Hanuza, M. Mączka, and J. H. van der Maas, J. Phys. Condensed Matter 6, 10263 (1994).
- J. Hanuza, M. Mączka, and J. H. van der Maas, J. Mol. Struct. 348, 349 (1995).
- J. Hanuza, M. Mączka, and J. H. van der Maas, J. Solid State Chem. 117, 117 (1995).
- V. A. Efremov, V. K. Trunov, and Yu. A. Velikodnyi, *Zh. Neorg. Khim.* 16, 1052 (1971).
- P. V. Klevtsov, R. F. Klevtsova, and A. V. Demenev, *Kristallografiya* 17, 545 (1972).
- 8. S. V. Borisov and R. F. Klevtsova, Kristallografiya 13, 517 (1968).
- P. V. Klevtsov, L. P. Kozeeva, and L. Yu. Kharchenko, Kristallografiya 20, 1210 (1975).
- 10. R. F. Klevtsova and P. V. Klevtsov, Kristallografiya 17, 955 (1972).
- 11. R. F. Klevtsova and P. V. Klevtsov, Kristallografiya 16, 292 (1971.
- 12. L. Yu. Kharchenko and P. V. Klevtsov, Zh. Noerg. Khim. 21, 2836 (1976).
- V. A. Efremov, V. K. Trunov, and Yu. A. Velikodnyi, *Kristallografiya* 17, 1135 (1972).
- 14. A. I. Otko and N. M. Nesterenko, Ukr. Fiz. Zh. 24, 1048 (1979).
- A. I. Otko, N. M. Nesterenko, and L. P. Povstyanyi, *Phys. Stat. Solidi(a)* 46, 577 (1978).
- A. I. Otko, N. M. Nesterenko, and A. I. Zvyagin, *Izv. AN SSSR, Ser. fiz.* 43, 1675 (1979).
- F. Dudnik, T. M. Stolpakova, and G. A. Kiosse, *Izv. AN SSSR, Ser. fiz.* 50, 2249 (1986).
- A. I. Otko, G. G. Krainyuk, T. M. Stolpakova, and E. F. Dudnik, *Izv.* AN. SSSR, Ser. fiz. 48, 1116 (1984).
- G. Krainyuk, A. I. Otko, and A. E. osenko, *Izv. AN SSSR*, Ser. fiz. 47, 758 (1983).
- P. V. Klevtsov, A. V. Demenev, and R. F. Klevtsova, *Kristallografiya* 16, 520 (1971).

- I. G. Avaeva, V. B. Kravchenko, and T. N. Kobyzeva, *Neorg. Mater.* 8, 586 (1972).
- V. N. Karpov, I. B. Korotkievich, M. M. Minkova, and O. V. Sorokina, *Zh. Neorg. Khim.* 18, 1341 (1973).
- 23. V. B. Kravchenko, Zh. Strukt. Khim. 12, 1108 (1971).
- 24. P. V. Klevtsov and R. F. Klevtsova, J. Solid State Chem. 2, 278 (1970).
- 25. Yu. A. Velikodnyi and V. K. Trunov, Zh. Strukt. Khim. 12, 334 (1971).
- 26. Yu. A. Velikodnyi and V. K. Trunov, Neorg. Mater. 10, 1290 (1974).
- V. A. Balashov, L. A. Beda, and A. A. Mayer, *Neorg. Mater.* 7, 334 (1971).
- 28. V. A. Balashov and A. A. Mayer, Neorg. Mater. 7, 822 (1971).
- 29. R. H. Busey and O. L. Keller, J. Chem. Phys. 41, 251 (1964).
- 30. L. A. Woodward and H. L. Roberts, *Trans. Faraday Soc.* 52, 615 (1956).
- 31. P. Tartre and J. Predhomme, Spectrochim. Acta A 26, 2207 (1970).
- 32. P. Tartre and J. Predhomme, Spectrochim. Acta A 28, 69 (1972).
- P. Tartre and M. Liegeois-Duyckaerts, Spectrochim. Acta A 28, 2029 (1972).
- 34. A. S. Barker, Phys. Rev. A 135, 742 (1964).
- 35. G. M. Clark and W. P. Doyle, Spectrochim. Acta 22, 1441 (1966).
- 36. R. K. Khanna and E. R. Lippincott, Spectrochim. Acta A 24, 905 (1968).
- M. Liegeois-Duyckaerts and P. Tartre, Spectrochim. Acta A 28, 2037 (1972).
- 38. S. P. S. Porto and J. F. Scott, Phys. Rev. 157, 716 (1967).
- 39. M. Nicol and J. F. Durana, J. Chem. Phys. 54, 1436 (1971).

- S. Sheik Saleem, G. Aldruhas, and H. D. Bist, J. Solid State Chem. 48, 77 (1983).
- S. Sheik Saleem, G. Aldruhas, and H. D. Bist, Spectrochim. Acta A 39, 627 (1983).
- S. Sheik Saleem, G. Aldruhas, and H. D. Bist, Spectrochim. Acta A 39, 1049 (1983).
- S. Sheik Saleem, G. Aldruhas, and H. D. Bist, Spectrochim. Acta A 40, 149 (1984).
- 44. S. Sheik Saleem, G. Aldruhas, and H. D. Bist, *Infrared Phys.* 23, 217 (1983).
- S. Sheik Saleem and T. K. K. Srinivasan, Spectrochim. Acta A 41, 1419 (1985).
- 46. W. P. Griffith, J. Chem. Soc. A 211 (1969).
- 47. J. Hauck and A. Fadini, Z. Naturforsch. B 25, 422 (1970).
- M. Liegeois-Duyckaerts and P. Tarte, Spectrochim. Acta A 30, 1771 (1974).
- 49. A. Müller, E. J. Baran, and R. O. Carter, *Struc. Binding* 26, 81 (1976); and references cited therein.
- 50. M. Maczka, Eur. J. Solid State Inorg. Chem. 33, 783 (1996).
- 51. N. M. Nesterenko, V. I. Fomin, and V. I. Kutko, *Fiz. Niz. Temp.* **8**, 862 (1982).
- V. V. Fomichev, V. A. Efremov, D. D. Baldanova, I. O. Kondratov and K. I. Petrov, *Zh. Neorg. Khim.* 28, 1184 (1983).
- 53. J. Hanuza and L. Macalik, Spectrochim. Acta A 43, 361 (1987).
- 54. V. V. Fomichev and O. I. Kondratov, Spectrochim. Acta A 50, 1113 (1994).